Definition: A sequence in a set S is a function from $\mathbb{N} \backslash\{0\}$ to S.

Definition: (Limit of sequences)

If, $\forall \varepsilon>0, \exists N=N(\varepsilon)$ such that $\forall n>N,\left|x_{n}-x\right| \leq \varepsilon$,
then a sequence (x_{n}) of real numbers converges to the real number x.
We write $\lim _{n \rightarrow \infty} x_{n}=x$, and say " x is the limit of the sequence $\left(x_{n}\right)$ ".
Definition: If a sequence $\left(x_{n}\right)$ does not converge to some real number, then the sequence $\left(x_{n}\right)$ diverges.

Write the negation of convergence using quantifiers.

Examples

1. Prove that $\lim _{n \rightarrow \infty} \frac{1}{n}=0$.
2. Prove that $\lim _{n \rightarrow \infty} 1=1$.
3. Prove that $\lim _{n \rightarrow \infty} \frac{3}{2 n+1}=0$.
4. Prove that $\lim _{n \rightarrow \infty} \frac{2 n+1}{n+1}=2$.
5. Prove that the sequence $a_{n}=1+(-1)^{n}$ is divergent.
