<u>Definition</u>: A sequence in a set S is a function from $\mathbb{N} \setminus \{0\}$ to S.

<u>Definition</u>: (Limit of sequences) If, $\forall \varepsilon > 0$, $\exists N = N(\varepsilon)$ such that $\forall n > N$, $|x_n - x| \leq \varepsilon$, then a sequence (x_n) of real numbers **converges** to the real number x.

We write $\lim_{n\to\infty} x_n = x$, and say "x is the limit of the sequence (x_n) ".

<u>Definition</u>: If a sequence (x_n) does not converge to some real number, then the sequence (x_n) diverges.

Write the negation of convergence using quantifiers.

Examples

1. Prove that $\lim_{n \to \infty} \frac{1}{n} = 0.$

2. Prove that $\lim_{n \to \infty} 1 = 1$.

3. Prove that $\lim_{n \to \infty} \frac{3}{2n+1} = 0.$

4. Prove that $\lim_{n \to \infty} \frac{2n+1}{n+1} = 2.$

5. Prove that the sequence $a_n = 1 + (-1)^n$ is divergent.